Index: The Book of Statistical ProofsModel SelectionGoodness-of-fit measuresF-statistic ▷ Relationship to coefficient of determination

Theorem: Let there be a linear regression model with independent observations

\[\label{eq:mlr} y = X\beta + \varepsilon, \; \varepsilon_i \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2) \; .\]

Then, the F-statistic for comparing this model against a null model containing only a constant regressor $x_0 = 1_n$ can be expressed in terms of the coefficient of determination

\[\label{eq:F-R2} F = \frac{R^2/(p-1)}{(1-R^2)/(n-p)}\]

and vice versa

\[\label{eq:R2-F} R^2 = 1 - \frac{1}{F \cdot \frac{n-p}{p-1} + 1}\]

where $n$ and $p$ are the dimensions of the design matrix $X \in \mathbb{R}^{n \times p}$.

Proof: Consider two linear regression models for the same measured data $y$, one using design matrix $X$ from \eqref{eq:mlr} and the other with design matrix $X_0 = 1_n \in \mathbb{R}^{n \times 1}$. Then, $\mathrm{RSS}$ is the residual sum of squares of the model in \eqref{eq:mlr} and the residual sum of squares for the model using $X_0$ is equal to the total sum of squares.


1) Thus, the F-statistic

\[\label{eq:F} F = \frac{(\mathrm{RSS}_0-\mathrm{RSS})/(p-p_0)}{\mathrm{RSS}/(n-p)}\]

becomes

\[\label{eq:F-RSS-TSS} F = \frac{(\mathrm{TSS}-\mathrm{RSS})/(p-1)}{\mathrm{RSS}/(n-p)} \; .\]

From this, we can derive $F$ in terms of $R^2$:

\[\label{eq:F-R2-qed} \begin{split} F &= \frac{(\mathrm{TSS}-\mathrm{RSS})/(p-1)}{\mathrm{RSS}/(n-p)} \\ &= \frac{\frac{\mathrm{TSS} - \mathrm{RSS}}{\mathrm{TSS}} / (p-1)}{\frac{\mathrm{RSS}}{\mathrm{TSS}} / (n-p)} \\ &= \frac{\left( 1 - \frac{\mathrm{RSS}}{\mathrm{TSS}} \right) / (p-1)}{\left( 1 - \left( 1- \frac{\mathrm{RSS}}{\mathrm{TSS}} \right)\right) / (n-p)} \\ &= \frac{\left(R^2\right)/(p-1)}{\left(1-R^2\right)/(n-p)} \; . \end{split}\]


2) Rearranging this equation, we can derive $R^2$ in terms of $F$:

\[\label{eq:R2-F-qed} \begin{split} F &= \frac{\left(R^2\right)/(p-1)}{\left(1-R^2\right)/(n-p)} \\ F \cdot \frac{n-p}{p-1} &= \frac{R^2}{\left(1-R^2\right)} \\ F \cdot \frac{n-p}{p-1} \cdot (1-R^2) &= R^2 \\ F \cdot \frac{n-p}{p-1} - F \cdot \frac{n-p}{p-1} \cdot R^2 &= R^2 \\ F \cdot \frac{n-p}{p-1} \cdot R^2 + R^2 &= F \cdot \frac{n-p}{p-1} \\ R^2 \left( F \cdot \frac{n-p}{p-1} \cdot + 1 \right) &= F \cdot \frac{n-p}{p-1} \\ R^2 &= \frac{F \cdot \frac{n-p}{p-1}}{F \cdot \frac{n-p}{p-1} \cdot + 1} \\ R^2 &= \frac{F \cdot \frac{n-p}{p-1} + 1 - 1}{F \cdot \frac{n-p}{p-1} \cdot + 1} \\ R^2 &= \frac{F \cdot \frac{n-p}{p-1} + 1}{F \cdot \frac{n-p}{p-1} \cdot + 1} - \frac{1}{F \cdot \frac{n-p}{p-1} \cdot + 1} \\ R^2 &= 1 - \frac{1}{F \cdot \frac{n-p}{p-1} \cdot + 1} \\ \end{split}\]

This completes the proof.

Sources:
  • Alecos Papadopoulos (2014): "What is the distribution of R² in linear regression under the null hypothesis?"; in: StackExchange CrossValidated, retrieved on 2024-03-15; URL: https://stats.stackexchange.com/a/130082.

Metadata: ID: P442 | shortcut: fstat-rsq | author: JoramSoch | date: 2024-03-15, 12:18.