Proof: Median of the exponential distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Exponential distribution ▷
Median
Metadata: ID: P49 | shortcut: exp-med | author: JoramSoch | date: 2020-02-11, 15:03.
Theorem: Let $X$ be a random variable following an exponential distribution:
\[\label{eq:exp} X \sim \mathrm{Exp}(\lambda) \; .\]Then, the median of $X$ is
\[\label{eq:exp-med} \mathrm{median}(X) = \frac{\ln 2}{\lambda} \; .\]Proof: The median is the value at which the cumulative distribution function is $1/2$:
\[\label{eq:median} F_X(\mathrm{median}(X)) = \frac{1}{2} \; .\]The cumulative distribution function of the exponential distribution is
\[\label{eq:exp-cdf} F_X(x) = 1 - \exp[-\lambda x], \quad x \geq 0 \; .\]Thus, the inverse CDF is
\[\label{eq:exp-cdf-inv} x = -\frac{\ln(1-p)}{\lambda}\]and setting $p = 1/2$, we obtain:
\[\label{eq:exp-med-qed} \mathrm{median}(X) = -\frac{\ln(1-\frac{1}{2})}{\lambda} = \frac{\ln 2}{\lambda} \; .\]∎
Sources: Metadata: ID: P49 | shortcut: exp-med | author: JoramSoch | date: 2020-02-11, 15:03.