Proof: Exponential distribution is a special case of gamma distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Exponential distribution ▷
Special case of gamma distribution
Metadata: ID: P69 | shortcut: exp-gam | author: JoramSoch | date: 2020-03-02, 20:49.
Theorem: The exponential distribution is a special case of the gamma distribution with shape $a = 1$ and rate $b = \lambda$.
Proof: The probability density function of the gamma distribution is
\[\label{eq:gam-pdf} \mathrm{Gam}(x; a, b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp[-b x] \; .\]Setting $a = 1$ and $b = \lambda$, we obtain
\[\label{eq:exp-pdf} \begin{split} \mathrm{Gam}(x; 1, \lambda) &= \frac{\lambda^1}{\Gamma(1)} x^{1-1} \exp[-\lambda x] \\ &= \frac{x^0}{\Gamma(1)} \lambda \exp[-\lambda x] \\ &= \lambda \exp[-\lambda x] \end{split}\]which is equivalent to the probability density function of the exponential distribution.
∎
Sources: Metadata: ID: P69 | shortcut: exp-gam | author: JoramSoch | date: 2020-03-02, 20:49.