Proof: Addition of the differential entropy upon multiplication with invertible matrix
Theorem: Let $X$ be a continuous random vector. Then, the differential entropy of $X$ increases additively when multiplied with an invertible matrix $A$:
\[\label{eq:dent-addvec} \mathrm{h}(AX) = \mathrm{h}(X) + \log |A| \; .\]Proof: By definition, the differential entropy of $X$ is
\[\label{eq:X-dent} \mathrm{h}(X) = - \int_{\mathcal{X}} f_X(x) \log f_X(x) \, \mathrm{d}x\]where $f_X(x)$ is the probability density function of $X$ and $\mathcal{X}$ is the set of possible values of $X$.
The probability density function of a linear function of a continuous random vector $Y = g(X) = \Sigma X + \mu$ is
\[\label{eq:pdf-linfct} f_Y(y) = \left\{ \begin{array}{rl} \frac{1}{\left| \Sigma \right|} f_X(\Sigma^{-1}(y-\mu)) \; , & \text{if} \; y \in \mathcal{Y} \\ 0 \; , & \text{if} \; y \notin \mathcal{Y} \end{array} \right.\]where $\mathcal{Y} = \left\lbrace y = \Sigma x + \mu: x \in \mathcal{X} \right\rbrace$ is the set of possible outcomes of $Y$.
Therefore, with $Y = g(X) = AX$, i.e. $\Sigma = A$ and $\mu = 0_n$, the probability density function of $Y$ is given by
\[\label{eq:Y-pdf} f_Y(y) = \left\{ \begin{array}{rl} \frac{1}{\left| A \right|} f_X(A^{-1}y) \; , & \text{if} \; y \in \mathcal{Y} \\ 0 \; , & \text{if} \; y \notin \mathcal{Y} \end{array} \right.\]where $\mathcal{Y} = \left\lbrace y = A x: x \in \mathcal{X} \right\rbrace$.
Thus, the differential entropy of $Y$ is
\[\label{eq:Y-dent-s1} \begin{split} \mathrm{h}(Y) &\overset{\eqref{eq:X-dent}}{=} - \int_{\mathcal{Y}} f_Y(y) \log f_Y(y) \, \mathrm{d}y \\ &\overset{\eqref{eq:Y-pdf}}{=} - \int_{\mathcal{Y}} \left[ \frac{1}{\left| A \right|} f_X(A^{-1}y) \right] \log \left[ \frac{1}{\left| A \right|} f_X(A^{-1}y) \right] \, \mathrm{d}y \; . \end{split}\]Substituting $y = Ax$ into the integral, we obtain
\[\label{eq:Y-dent-s2} \begin{split} \mathrm{h}(Y) &= - \int_{\mathcal{X}} \left[ \frac{1}{\left| A \right|} f_X(A^{-1}Ax) \right] \log \left[ \frac{1}{\left| A \right|} f_X(A^{-1}Ax) \right] \, \mathrm{d}(Ax) \\ &= - \frac{1}{\left| A \right|} \int_{\mathcal{X}} f_X(x) \log \left[ \frac{1}{\left| A \right|} f_X(x) \right] \, \mathrm{d}(Ax) \; . \end{split}\]Using the differential $\mathrm{d}(Ax) = \lvert A \rvert \mathrm{d}x$, this becomes
\[\label{eq:Y-dent-s3} \begin{split} \mathrm{h}(Y) &= - \frac{\left| A \right|}{\left| A \right|} \int_{\mathcal{X}} f_X(x) \log \left[ \frac{1}{\left| A \right|} f_X(x) \right] \, \mathrm{d}x \\ &= - \int_{\mathcal{X}} f_X(x) \log f_X(x) \, \mathrm{d}x - \int_{\mathcal{X}} f_X(x) \log \frac{1}{\left| A \right|} \, \mathrm{d}x \; . \end{split}\]Finally, employing the fact that $\int_{\mathcal{X}} f_X(x) \, \mathrm{d}x = 1$, we can derive the differential entropy of $Y$ as
\[\label{eq:Y-dent-s4} \begin{split} \mathrm{h}(Y) &= - \int_{\mathcal{X}} f_X(x) \log f_X(x) \, \mathrm{d}x + \log \left| A \right| \int_{\mathcal{X}} f_X(x) \, \mathrm{d}x \\ &\overset{\eqref{eq:X-dent}}{=} \mathrm{h}(X) + \log |A| \; . \end{split}\]- Cover, Thomas M. & Thomas, Joy A. (1991): "Properties of Differential Entropy, Relative Entropy, and Mutual Information"; in: Elements of Information Theory, sect. 8.6, p. 253; URL: https://www.google.de/books/edition/Elements_of_Information_Theory/j0DBDwAAQBAJ.
- Wikipedia (2021): "Differential entropy"; in: Wikipedia, the free encyclopedia, retrieved on 2021-10-07; URL: https://en.wikipedia.org/wiki/Differential_entropy#Properties_of_differential_entropy.
Metadata: ID: P261 | shortcut: dent-addvec | author: JoramSoch | date: 2021-10-07, 09:10.