Index: The Book of Statistical ProofsGeneral TheoremsInformation theoryDifferential entropy ▷ Addition upon matrix multiplication

Theorem: Let X be a continuous random vector. Then, the differential entropy of X increases additively when multiplied with an invertible matrix A:

\label{eq:dent-addvec} \mathrm{h}(AX) = \mathrm{h}(X) + \log |A| \; .

Proof: By definition, the differential entropy of X is

\label{eq:X-dent} \mathrm{h}(X) = - \int_{\mathcal{X}} f_X(x) \log f_X(x) \, \mathrm{d}x

where f_X(x) is the probability density function of X and \mathcal{X} is the set of possible values of X.

The probability density function of a linear function of a continuous random vector Y = g(X) = \Sigma X + \mu is

\label{eq:pdf-linfct} f_Y(y) = \left\{ \begin{array}{rl} \frac{1}{\left| \Sigma \right|} f_X(\Sigma^{-1}(y-\mu)) \; , & \text{if} \; y \in \mathcal{Y} \\ 0 \; , & \text{if} \; y \notin \mathcal{Y} \end{array} \right.

where \mathcal{Y} = \left\lbrace y = \Sigma x + \mu: x \in \mathcal{X} \right\rbrace is the set of possible outcomes of Y.

Therefore, with Y = g(X) = AX, i.e. \Sigma = A and \mu = 0_n, the probability density function of Y is given by

\label{eq:Y-pdf} f_Y(y) = \left\{ \begin{array}{rl} \frac{1}{\left| A \right|} f_X(A^{-1}y) \; , & \text{if} \; y \in \mathcal{Y} \\ 0 \; , & \text{if} \; y \notin \mathcal{Y} \end{array} \right.

where \mathcal{Y} = \left\lbrace y = A x: x \in \mathcal{X} \right\rbrace.

Thus, the differential entropy of Y is

\label{eq:Y-dent-s1} \begin{split} \mathrm{h}(Y) &\overset{\eqref{eq:X-dent}}{=} - \int_{\mathcal{Y}} f_Y(y) \log f_Y(y) \, \mathrm{d}y \\ &\overset{\eqref{eq:Y-pdf}}{=} - \int_{\mathcal{Y}} \left[ \frac{1}{\left| A \right|} f_X(A^{-1}y) \right] \log \left[ \frac{1}{\left| A \right|} f_X(A^{-1}y) \right] \, \mathrm{d}y \; . \end{split}

Substituting y = Ax into the integral, we obtain

\label{eq:Y-dent-s2} \begin{split} \mathrm{h}(Y) &= - \int_{\mathcal{X}} \left[ \frac{1}{\left| A \right|} f_X(A^{-1}Ax) \right] \log \left[ \frac{1}{\left| A \right|} f_X(A^{-1}Ax) \right] \, \mathrm{d}(Ax) \\ &= - \frac{1}{\left| A \right|} \int_{\mathcal{X}} f_X(x) \log \left[ \frac{1}{\left| A \right|} f_X(x) \right] \, \mathrm{d}(Ax) \; . \end{split}

Using the differential \mathrm{d}(Ax) = \lvert A \rvert \mathrm{d}x, this becomes

\label{eq:Y-dent-s3} \begin{split} \mathrm{h}(Y) &= - \frac{\left| A \right|}{\left| A \right|} \int_{\mathcal{X}} f_X(x) \log \left[ \frac{1}{\left| A \right|} f_X(x) \right] \, \mathrm{d}x \\ &= - \int_{\mathcal{X}} f_X(x) \log f_X(x) \, \mathrm{d}x - \int_{\mathcal{X}} f_X(x) \log \frac{1}{\left| A \right|} \, \mathrm{d}x \; . \end{split}

Finally, employing the fact that \int_{\mathcal{X}} f_X(x) \, \mathrm{d}x = 1, we can derive the differential entropy of Y as

\label{eq:Y-dent-s4} \begin{split} \mathrm{h}(Y) &= - \int_{\mathcal{X}} f_X(x) \log f_X(x) \, \mathrm{d}x + \log \left| A \right| \int_{\mathcal{X}} f_X(x) \, \mathrm{d}x \\ &\overset{\eqref{eq:X-dent}}{=} \mathrm{h}(X) + \log |A| \; . \end{split}
Sources:

Metadata: ID: P261 | shortcut: dent-addvec | author: JoramSoch | date: 2021-10-07, 09:10.