Proof: Mode of the continuous uniform distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Continuous uniform distribution ▷
Mode
Metadata: ID: P84 | shortcut: cuni-med | author: JoramSoch | date: 2020-03-16, 16:29.
Theorem: Let $X$ be a random variable following a continuous uniform distribution:
\[\label{eq:cuni} X \sim \mathcal{U}(a, b) \; .\]Then, the mode of $X$ is
\[\label{eq:cuni-mode} \mathrm{mode}(X) \in [a,b] \; .\]Proof: The mode is the value which maximizes the probability density function:
\[\label{eq:mode} \mathrm{mode}(X) = \operatorname*{arg\,max}_x f_X(x) \; .\]The probability density function of the continuous uniform distribution is:
\[\label{eq:cuni-pdf} f_X(x) = \left\{ \begin{array}{rl} \frac{1}{b-a} \; , & \text{if} \; a \leq x \leq b \\ 0 \; , & \text{otherwise} \; . \end{array} \right.\]Since the PDF attains its only non-zero value whenever $a \leq x \leq b$,
\[\label{eq:cuni-pdf-max} \operatorname*{max}_x f_X(x) = \frac{1}{b-a} \; ,\]any value in the interval $[a,b]$ may be considered the mode of $X$.
∎
Sources: Metadata: ID: P84 | shortcut: cuni-med | author: JoramSoch | date: 2020-03-16, 16:29.