Proof: Median of the continuous uniform distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Continuous uniform distribution ▷
Median
Metadata: ID: P83 | shortcut: cuni-med | author: JoramSoch | date: 2020-03-16, 16:19.
Theorem: Let $X$ be a random variable following a continuous uniform distribution:
\[\label{eq:cuni} X \sim \mathcal{U}(a, b) \; .\]Then, the median of $X$ is
\[\label{eq:cuni-med} \mathrm{median}(X) = \frac{1}{2} (a+b) \; .\]Proof: The median is the value at which the cumulative distribution function is $1/2$:
\[\label{eq:median} F_X(\mathrm{median}(X)) = \frac{1}{2} \; .\]The cumulative distribution function of the continuous uniform distribution is
\[\label{eq:cuni-cdf} F_X(x) = \left\{ \begin{array}{rl} 0 \; , & \text{if} \; x < a \\ \frac{x-a}{b-a} \; , & \text{if} \; a \leq x \leq b \\ 1 \; , & \text{if} \; x > b \; . \end{array} \right.\]Thus, the inverse CDF is
\[\label{eq:cuni-cdf-inv} x = bp + a(1-p) \; .\]Setting $p = 1/2$, we obtain:
\[\label{eq:cuni-med-qed} \mathrm{median}(X) = b \cdot \frac{1}{2} + a \cdot \left( 1-\frac{1}{2} \right) = \frac{1}{2} (a+b) \; .\]∎
Sources: Metadata: ID: P83 | shortcut: cuni-med | author: JoramSoch | date: 2020-03-16, 16:19.