Proof: Independent random variables are uncorrelated
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Correlation ▷
Correlation under independence
Metadata: ID: P472 | shortcut: corr-ind | author: JoramSoch | date: 2024-09-27, 12:32.
Theorem: Independent random variables are uncorrelated.
Proof: The correlation of two random variables is defined as:
\[\label{eq:corr} \mathrm{Corr}(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X)} \sqrt{\mathrm{Var}(Y)}} \; .\]The covariance of independent random variables is zero:
\[\label{eq:cov-ind} X, Y \; \text{independent} \quad \Rightarrow \quad \mathrm{Cov}(X,Y) = 0 \; .\]Thus, the correlation of independent random variables is also zero:
\[\label{eq:corr-ind-qed} X, Y \; \text{independent} \quad \Rightarrow \quad \mathrm{Corr}(X,Y) = 0 \; .\]∎
Sources: - StatProofBook (2022): "Uncorrelated random variables are not necessarily independent."; in: X, Nov 22, 2022, 06:34 AM; URL: https://x.com/StatProofBook/status/1594927275514134528.
Metadata: ID: P472 | shortcut: corr-ind | author: JoramSoch | date: 2024-09-27, 12:32.