Proof: Existence of a corresponding forward model
Theorem: Let there be observations $Y \in \mathbb{R}^{n \times v}$ and $X \in \mathbb{R}^{n \times p}$ and consider a weight matrix $W = f(Y,X) \in \mathbb{R}^{v \times p}$ predicting $X$ from $Y$:
\[\label{eq:bda} \hat{X} = Y W \; .\]Then, there exists a corresponding forward model.
Proof: The corresponding forward model is defined as
\[\label{eq:cfm} Y = \hat{X} A^\mathrm{T} + E \quad \text{with} \quad \hat{X}^\mathrm{T} E = 0\]and the parameters of the corresponding forward model are equal to
\[\label{eq:cfm-para} A = \Sigma_y W \Sigma_x^{-1} \quad \text{where} \quad \Sigma_x = \hat{X}^\mathrm{T} \hat{X} \quad \text{and} \quad \Sigma_y = Y^\mathrm{T} Y \; .\]
1) Because the columns of $\hat{X}$ are assumed to be linearly independent by definition of the corresponding forward model, the matrix $\Sigma_x = \hat{X}^\mathrm{T} \hat{X}$ is invertible, such that $A$ in \eqref{eq:cfm-para} is well-defined.
2) Moreover, the solution for the matrix $A$ satisfies the constraint of the corresponding forward model for predicted $X$ and errors $E$ to be uncorrelated which can be shown as follows:
This completes the proof.
- Haufe S, Meinecke F, Görgen K, Dähne S, Haynes JD, Blankertz B, Bießmann F (2014): "On the interpretation of weight vectors of linear models in multivariate neuroimaging"; in: NeuroImage, vol. 87, pp. 96–110, Appendix B; URL: https://www.sciencedirect.com/science/article/pii/S1053811913010914; DOI: 10.1016/j.neuroimage.2013.10.067.
Metadata: ID: P270 | shortcut: cfm-exist | author: JoramSoch | date: 2021-10-21, 17:43.