Index: The Book of Statistical ProofsStatistical ModelsMultivariate normal dataInverse general linear model ▷ Proof of existence

Theorem: Let there be observations $Y \in \mathbb{R}^{n \times v}$ and $X \in \mathbb{R}^{n \times p}$ and consider a weight matrix $W = f(Y,X) \in \mathbb{R}^{v \times p}$ predicting $X$ from $Y$:

\[\label{eq:bda} \hat{X} = Y W \; .\]

Then, there exists a corresponding forward model.

Proof: The corresponding forward model is defined as

\[\label{eq:cfm} Y = \hat{X} A^\mathrm{T} + E \quad \text{with} \quad \hat{X}^\mathrm{T} E = 0\]

and the parameters of the corresponding forward model are equal to

\[\label{eq:cfm-para} A = \Sigma_y W \Sigma_x^{-1} \quad \text{where} \quad \Sigma_x = \hat{X}^\mathrm{T} \hat{X} \quad \text{and} \quad \Sigma_y = Y^\mathrm{T} Y \; .\]


1) Because the columns of $\hat{X}$ are assumed to be linearly independent by definition of the corresponding forward model, the matrix $\Sigma_x = \hat{X}^\mathrm{T} \hat{X}$ is invertible, such that $A$ in \eqref{eq:cfm-para} is well-defined.


2) Moreover, the solution for the matrix $A$ satisfies the constraint of the corresponding forward model for predicted $X$ and errors $E$ to be uncorrelated which can be shown as follows:

\[\label{eq:X-E-0} \begin{split} \hat{X}^\mathrm{T} E &\overset{\eqref{eq:cfm}}{=} \hat{X}^\mathrm{T} \left( Y - \hat{X} A^\mathrm{T} \right) \\ &\overset{\eqref{eq:cfm-para}}{=} \hat{X}^\mathrm{T} \left( Y - \hat{X} \, \Sigma_x^{-1} W^\mathrm{T} \Sigma_y \right) \\ &= \hat{X}^\mathrm{T} Y - \hat{X}^\mathrm{T} \hat{X} \, \Sigma_x^{-1} W^\mathrm{T} \Sigma_y \\ &\overset{\eqref{eq:cfm-para}}{=} \hat{X}^\mathrm{T} Y - \hat{X}^\mathrm{T} \hat{X} \left( \hat{X}^\mathrm{T} \hat{X} \right)^{-1} W^\mathrm{T} \left( Y^\mathrm{T} Y \right) \\ % &= \hat{X}^\mathrm{T} Y - W^\mathrm{T} \left( Y^\mathrm{T} Y \right) \\ &\overset{\eqref{eq:bda}}{=} (Y W)^\mathrm{T} Y - W^\mathrm{T} \left( Y^\mathrm{T} Y \right) \\ &= W^\mathrm{T} Y^\mathrm{T} Y - W^\mathrm{T} Y^\mathrm{T} Y \\ &= 0 \; . \end{split}\]

This completes the proof.

Sources:

Metadata: ID: P270 | shortcut: cfm-exist | author: JoramSoch | date: 2021-10-21, 17:43.