Proof: Distributional transformation using cumulative distribution function
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Cumulative distribution function ▷
Distributional transformation
Metadata: ID: P222 | shortcut: cdf-dt | author: JoramSoch | date: 2021-04-07, 09:19.
Theorem: Let $X$ and $Y$ be two continuous random variables with cumulative distribution function $F_X(x)$ and invertible cumulative distribution function $F_Y(y)$. Then, the random variable
\[\label{eq:cdf-dt} \tilde{X} = F_Y^{-1}(F_X(X))\]has the same probability distribution as $Y$.
Proof: The cumulative distribution function of the transformation $\tilde{X} = F_Y^{-1}(F_X(X))$ can be derived as
\[\label{eq:cdf-dt-qed} \begin{split} F_{\tilde{X}}(y) &= \mathrm{Pr}\left( \tilde{X} \leq y \right) \\ &= \mathrm{Pr}\left( F_Y^{-1}(F_X(X)) \leq y \right) \\ &= \mathrm{Pr}\left( F_X(X) \leq F_Y(y) \right) \\ &= \mathrm{Pr}\left( X \leq F_X^{-1}(F_Y(y)) \right) \\ &= F_X\left( F_X^{-1}(F_Y(y)) \right) \\ &= F_Y(y) \\ \end{split}\]which shows that $\tilde{X}$ and $Y$ have the same cumulative distribution function and are thus identically distributed.
∎
Sources: - Soch, Joram (2020): "Distributional Transformation Improves Decoding Accuracy When Predicting Chronological Age From Structural MRI"; in: Frontiers in Psychiatry, vol. 11, art. 604268; URL: https://www.frontiersin.org/articles/10.3389/fpsyt.2020.604268/full; DOI: 10.3389/fpsyt.2020.604268.
Metadata: ID: P222 | shortcut: cdf-dt | author: JoramSoch | date: 2021-04-07, 09:19.