Proof: Probability mass function of the categorical distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Multivariate discrete distributions ▷
Categorical distribution ▷
Probability mass function
Metadata: ID: P98 | shortcut: cat-pmf | author: JoramSoch | date: 2020-05-11, 22:58.
Theorem: Let $X$ be a random vector following a categorical distribution:
\[\label{eq:cat} X \sim \mathrm{Cat}(\left[p_1, \ldots, p_k \right]) \; .\]Then, the probability mass function of $X$ is
\[\label{eq:cat-pmf} f_X(x) = \left\{ \begin{array}{rl} p_1 \; , & \text{if} \; x = e_1 \\ \vdots \; \hphantom{,} & \quad \vdots \\ p_k \; , & \text{if} \; x = e_k \; . \\ \end{array} \right.\]where $e_1, \ldots, e_k$ are the $1 \times k$ elementary row vectors.
Proof: This follows directly from the definition of the categorical distribution.
∎
Sources: Metadata: ID: P98 | shortcut: cat-pmf | author: JoramSoch | date: 2020-05-11, 22:58.