Proof: Linear combination of bivariate normal random variables
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Multivariate continuous distributions ▷
Bivariate normal distribution ▷
Linear combination
Metadata: ID: P475 | shortcut: bvn-lincomb | author: JoramSoch | date: 2024-10-25, 11:59.
Theorem: Let $X$ and $Y$ follow a bivariate normal distribution:
\[\label{eq:bvn} \left[ \begin{matrix} X \\ Y \end{matrix} \right] \sim \mathcal{N}\left( \left[ \begin{matrix} \mu_1 \\ \mu_2 \end{matrix} \right], \left[ \begin{matrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{matrix} \right] \right) \; .\]Then, any linear combination of $X$ and $Y$ follows a univariate normal distribution:
\[\label{eq:bvn-lincomb} Z = a X + b Y \sim \mathcal{N}\left( a \mu_1 + b \mu_2, a^2 \sigma_1^2 + 2ab \sigma_{12} + b^2 \sigma_2^2 \right) \; .\]Proof: The linear transformation theorem for the multivariate normal distribution states that
\[\label{eq:mvn-ltt} X \sim \mathcal{N}(\mu, \Sigma) \quad \Rightarrow \quad Y = AX + c \sim \mathcal{N}(A\mu + c, A \Sigma A^\mathrm{T})\]where $X \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^n$. In the present case, we have
\[\label{eq:X-A-a} X \in \mathbb{R}^2 \quad \text{and} \quad A = \left[ \begin{matrix} a & b \end{matrix} \right] \in \mathbb{R}^{1 \times 2} \quad \text{and} \quad c = 0 \in \mathbb{R} \; ,\]such that
\[\label{eq:Z-X-Y} Z = A \left[ \begin{matrix} X \\ Y \end{matrix} \right] + c = \left[ \begin{matrix} a & b \end{matrix} \right] \left[ \begin{matrix} X \\ Y \end{matrix} \right] + 0 = a X + b Y \; .\]Combining \eqref{eq:mvn-ltt}, \eqref{eq:bvn} and \eqref{eq:Z-X-Y}, it follows that
\[\label{eq:bvn-lincomb-qed} \begin{split} Z &\sim \mathcal{N}\left( \left[ \begin{matrix} a & b \end{matrix} \right] \left[ \begin{matrix} \mu_1 \\ \mu_2 \end{matrix} \right], \left[ \begin{matrix} a & b \end{matrix} \right] \left[ \begin{matrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{matrix} \right] \left[ \begin{matrix} a \\ b \end{matrix} \right] \right) \\ &\sim \mathcal{N}\left( a \mu_1 + b \mu_2, \left[ \begin{matrix} a \sigma_1^2 + b \sigma_{12} & a \sigma_{12} + b \sigma_2^2 \end{matrix} \right] \left[ \begin{matrix} a \\ b \end{matrix} \right] \right) \\ &\sim \mathcal{N}\left( a \mu_1 + b \mu_2, (a^2 \sigma_1^2 + ab \sigma_{12}) + (ab \sigma_{12} + b^2 \sigma_2^2) \right) \\ &\sim \mathcal{N}\left( a \mu_1 + b \mu_2, a^2 \sigma_1^2 + 2ab \sigma_{12} + b^2 \sigma_2^2 \right) \; . \end{split}\]∎
Sources: - Wikipedia (2024): "Misconceptions about the normal distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2024-10-25; URL: https://en.wikipedia.org/wiki/Misconceptions_about_the_normal_distribution.
Metadata: ID: P475 | shortcut: bvn-lincomb | author: JoramSoch | date: 2024-10-25, 11:59.