Proof: Variance of the binomial distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate discrete distributions ▷
Binomial distribution ▷
Variance
Metadata: ID: P302 | shortcut: bin-var | author: JoramSoch | date: 2022-01-20, 15:19.
Theorem: Let $X$ be a random variable following a binomial distribution:
\[\label{eq:bin} X \sim \mathrm{Bin}(n,p) \; .\]Then, the variance of $X$ is
\[\label{eq:bin-var} \mathrm{Var}(X) = n p \, (1-p) \; .\]Proof: By definition, a binomial random variable is the sum of $n$ independent and identical Bernoulli trials with success probability $p$. Therefore, the variance is
\[\label{eq:bin-var-s1} \mathrm{Var}(X) = \mathrm{Var}(X_1 + \ldots + X_n)\]and because variances add up under independence, this is equal to
\[\label{eq:bin-var-s2} \mathrm{Var}(X) = \mathrm{Var}(X_1) + \ldots + \mathrm{Var}(X_n) = \sum_{i=1}^{n} \mathrm{Var}(X_i) \; .\]With the variance of the Bernoulli distribution, we have:
\[\label{eq:bin-var-s3} \mathrm{Var}(X) = \sum_{i=1}^{n} p \, (1-p) = n p \, (1-p) \; .\]∎
Sources: - Wikipedia (2022): "Binomial distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2022-01-20; URL: https://en.wikipedia.org/wiki/Binomial_distribution#Expected_value_and_variance.
Metadata: ID: P302 | shortcut: bin-var | author: JoramSoch | date: 2022-01-20, 15:19.