Proof: Probability-generating function of the binomial distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate discrete distributions ▷
Binomial distribution ▷
Probability-generating function
Metadata: ID: P363 | shortcut: bin-pgf | author: JoramSoch | date: 2022-10-11, 09:25.
Theorem: Let $X$ be a random variable following a binomial distribution:
\[\label{eq:bin} X \sim \mathrm{Bin}(n,p) \; .\]Then, the probability-generating function of $X$ is
\[\label{eq:bin-pgf} G_X(z) = (q + pz)^n\]where $q = 1-p$.
Proof: The probability-generating function of $X$ is defined as
\[\label{eq:pgf} G_X(z) = \sum_{x=0}^{\infty} f_X(x) \, z^x\]With the probability mass function of the binomial distribution
\[\label{eq:bin-pmf} f_X(x) = {n \choose x} \, p^x \, (1-p)^{n-x} \; ,\]we obtain:
\[\label{eq:pgf-zero-s1} \begin{split} G_X(z) &= \sum_{x=0}^{n} {n \choose x} \, p^x \, (1-p)^{n-x} \, z^x \\ &= \sum_{x=0}^{n} {n \choose x} \, (pz)^x \, (1-p)^{n-x} \; . \end{split}\]According to the binomial theorem
\[\label{eq:bin-th} (x+y)^n = \sum_{k=0}^{n} {n \choose k} \, x^{n-k} \, y^k \; ,\]the sum in equation \eqref{eq:pgf-zero-s1} equals
\[\label{eq:pgf-zero-s2} G_X(z) = \left( (1-p) + (pz) \right)^n\]which is equivalent to the result in \eqref{eq:bin-pgf}.
∎
Sources: - ProofWiki (2022): "Probability Generating Function of Binomial Distribution"; in: ProofWiki, retrieved on 2022-10-11; URL: https://proofwiki.org/wiki/Probability_Generating_Function_of_Binomial_Distribution.
Metadata: ID: P363 | shortcut: bin-pgf | author: JoramSoch | date: 2022-10-11, 09:25.