Proof: Maximum log-likelihood for binomial observations
Index:
The Book of Statistical Proofs ▷
Statistical Models ▷
Count data ▷
Binomial observations ▷
Maximum log-likelihood
Metadata: ID: P382 | shortcut: bin-mll | author: JoramSoch | date: 2022-11-24, 14:19.
Theorem: Let $y$ be the number of successes resulting from $n$ independent trials with unknown success probability $p$, such that $y$ follows a binomial distribution:
\[\label{eq:Bin} y \sim \mathrm{Bin}(n,p) \; .\]Then, the maximum log-likelihood for this model is
\[\label{eq:Bin-MLL} \begin{split} \mathrm{MLL} &= \log \Gamma(n+1) - \log \Gamma(y+1) - \log \Gamma(n-y+1) \\ &- n \log (n) + y \log (y) + (n-y) \log (n-y) \; . \end{split}\]Proof: The log-likelihood function for binomial data is given by
\[\label{eq:Bin-LL} \mathrm{LL}(p) = \log {n \choose y} + y \log p + (n-y) \log (1-p)\]and the maximum likelihood estimate of the success probability $p$ is
\[\label{eq:Bin-MLE} \hat{p} = \frac{y}{n} \; .\]Plugging \eqref{eq:Bin-MLE} into \eqref{eq:Bin-LL}, we obtain the maximum log-likelihood of the binomial observation model in \eqref{eq:Bin} as
\[\label{eq:Bin-MLL-s1} \begin{split} \mathrm{MLL} &= \mathrm{LL}(\hat{p}) \\ &= \log {n \choose y} + y \log \left( \frac{y}{n} \right) + (n-y) \log \left( 1 - \frac{y}{n} \right) \\ &= \log {n \choose y} + y \log \left( \frac{y}{n} \right) + (n-y) \log \left( \frac{n-y}{n} \right) \\ &= \log {n \choose y} + y \log (y) + (n-y) \log (n-y) - n \log (n) \; . \end{split}\]With the definition of the binomial coefficient
\[\label{eq:bin-coeff} {n \choose k} = \frac{n!}{k! \, (n-k)!}\]and the definition of the gamma function
\[\label{eq:gam-fct} \Gamma(n) = (n-1)! \; ,\]the MLL finally becomes
\[\label{eq:Bin-MLL-s2} \begin{split} \mathrm{MLL} &= \log \Gamma(n+1) - \log \Gamma(y+1) - \log \Gamma(n-y+1) \\ &- n \log (n) + y \log (y) + (n-y) \log (n-y) \; . \end{split}\]∎
Sources: Metadata: ID: P382 | shortcut: bin-mll | author: JoramSoch | date: 2022-11-24, 14:19.