Proof: Median of the beta distribution
Theorem: Let $X$ be a random variable following a beta distribution:
\[\label{eq:beta} X \sim \mathrm{Bet}(\alpha, \beta) \; .\]Then, the median of $X$ is
\[\label{eq:beta-med} \mathrm{median}(X) = \mathrm{B}_{\alpha,\beta}^{-1}\left( \frac{\mathrm{B}(\alpha,\beta)}{2} \right) = \mathrm{I}_{1/2}^{-1}(\alpha,\beta)\]where $\mathrm{B}(a,b)$ is the beta function, $\mathrm{B}_{a,b}^{-1}(y)$ is the inverse function of the incomplete beta function $\mathrm{B}(x; a, b)$ and $\mathrm{I}_y^{-1}(a,b)$ is the inverse function of the regularized incomplete beta function.
Proof: The median is the value at which the cumulative distribution function is $1/2$:
\[\label{eq:median} F_X(\mathrm{median}(X)) = \frac{1}{2} \; .\]The cumulative distribution function of the beta distribution is
\[\label{eq:beta-cdf} F_X(x) = \frac{\mathrm{B}(x; \alpha, \beta)}{\mathrm{B}(\alpha, \beta)}\]where the incomplete beta function $\mathrm{B}(x; a, b)$ is given by
\[\label{eq:inc-beta-fct} \mathrm{B}(x; a, b) = \int_0^x t^{a-1} (1-t)^{b-1} \, \mathrm{d}t \; .\]Thus, the inverse CDF, i.e. the quantile function, is
\[\label{eq:beta-cdf-inv} x = \mathrm{B}_{\alpha,\beta}^{-1}(p \, \mathrm{B}(\alpha,\beta))\]where $\mathrm{B}_{a,b}^{-1}(y)$ is the inverse function of $\mathrm{B}(x; a, b)$. Setting $p = 1/2$, we obtain:
\[\label{eq:beta-med-qed} \mathrm{median}(X) = \mathrm{B}_{\alpha,\beta}^{-1}\left( \frac{\mathrm{B}(\alpha,\beta)}{2} \right) \; .\]Alternatively, the cumulative distribution function may be written as
\[\label{eq:beta-cdf-alt} F_X(x) = \mathrm{I}_x(a,b)\]using the regularized incomplete beta function
\[\label{eq:reg-inc-beta-fct} \mathrm{I}_x(a,b) = \frac{\mathrm{B}(x; \alpha, \beta)}{\mathrm{B}(\alpha, \beta)}\]in which case the inverse CDF is
\[\label{eq:beta-cdf-inv-alt} x = \mathrm{I}_p^{-1}(a,b) \; ,\]such that the median becomes
\[\label{eq:beta-med-qed-alt} \mathrm{median}(X) = \mathrm{I}_{1/2}^{-1}(\alpha,\beta) \; .\]- Wikipedia (2025): "Beta distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2025-10-24; URL: https://en.wikipedia.org/wiki/Beta_distribution#Median.
Metadata: ID: P519 | shortcut: beta-med | author: JoramSoch | date: 2025-10-24, 13:45.