Proof: Cumulative distribution function of the beta distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Beta distribution ▷
Cumulative distribution function
Metadata: ID: P195 | shortcut: beta-cdf | author: JoramSoch | date: 2020-11-19, 08:01.
Theorem: Let $X$ be a positive random variable following a beta distribution:
\[\label{eq:beta} X \sim \mathrm{Bet}(\alpha, \beta) \; .\]Then, the cumulative distribution function of $X$ is
\[\label{eq:beta-cdf} F_X(x) = \frac{\mathrm{B}(x; \alpha, \beta)}{\mathrm{B}(\alpha, \beta)}\]where $\mathrm{B}(a,b)$ is the beta function and $\mathrm{B}(x;a,b)$ is the incomplete gamma function.
Proof: The probability density function of the beta distribution is:
\[\label{eq:beta-pdf} f_X(x) = \frac{1}{\mathrm{B}(\alpha, \beta)} \, x^{\alpha-1} \, (1-x)^{\beta-1} \; .\]Thus, the cumulative distribution function is:
\[\label{eq:beta-cdf-app} \begin{split} F_X(x) &= \int_{0}^{x} \mathrm{Bet}(z; \alpha, \beta) \, \mathrm{d}z \\ &= \int_{0}^{x} \frac{1}{\mathrm{B}(\alpha, \beta)} \, z^{\alpha-1} \, (1-z)^{\beta-1} \, \mathrm{d}z \\ &= \frac{1}{\mathrm{B}(\alpha, \beta)} \int_{0}^{x} z^{\alpha-1} \, (1-z)^{\beta-1} \, \mathrm{d}z \; . \end{split}\]With the definition of the incomplete beta function
\[\label{eq:inc-beta-fct} \mathrm{B}(x;a,b) = \int_{0}^{x} t^{a-1} \, (1-t)^{b-1} \, \mathrm{d}t \; ,\]we arrive at the final result given by equation \eqref{eq:beta-cdf}:
\[\label{eq:beta-cdf-qed} F_X(x) = \frac{\mathrm{B}(x; \alpha, \beta)}{\mathrm{B}(\alpha, \beta)} \; .\]∎
Sources: - Wikipedia (2020): "Beta distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2020-11-19; URL: https://en.wikipedia.org/wiki/Beta_distribution#Cumulative_distribution_function.
- Wikipedia (2020): "Beta function"; in: Wikipedia, the free encyclopedia, retrieved on 2020-11-19; URL: https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function.
Metadata: ID: P195 | shortcut: beta-cdf | author: JoramSoch | date: 2020-11-19, 08:01.