Proof: Kullback-Leibler divergence for the Bernoulli distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate discrete distributions ▷
Bernoulli distribution ▷
Kullback-Leibler divergence
Metadata: ID: P419 | shortcut: bern-kl | author: JoramSoch | date: 2023-10-13, 15:20.
Theorem: Let $X$ be a random variable. Assume two Bernoulli distributions $P$ and $Q$ specifying the probability distribution of $X$ as
\[\label{eq:berns} \begin{split} P: \; X &\sim \mathrm{Bern}(p_1) \\ Q: \; X &\sim \mathrm{Bern}(p_2) \; . \end{split}\]Then, the Kullback-Leibler divergence of $P$ from $Q$ is given by
\[\label{eq:bern-KL} \mathrm{KL}[P\,||\,Q] = \ln \frac{1-p_1}{1-p_2} + p_1 \cdot \ln \frac{p_1 \, (1-p_2)}{p_2 \, (1-p_1)} \; .\]Proof: The KL divergence for a discrete random variable is given by
\[\label{eq:KL-disc} \mathrm{KL}[P\,||\,Q] = \sum_{x \in \mathcal{X}} p(x) \, \ln \frac{p(x)}{q(x)}\]which, applied to the Bernoulli distributions in \eqref{eq:berns}, yields
\[\label{eq:bern-KL-s1} \begin{split} \mathrm{KL}[P\,||\,Q] &= \sum_{x \in \left\lbrace 0,1 \right\rbrace} p(x) \, \ln \frac{p(x)}{q(x)} \\ &= p(X=0) \cdot \ln \frac{p(X=0)}{q(X=0)} + p(X=1) \cdot \ln \frac{p(X=1)}{q(X=1)} \; . \end{split}\]Using the probability mass function of the Bernoulli distribution, this becomes:
\[\label{eq:bern-KL-s2} \begin{split} \mathrm{KL}[P\,||\,Q] &= (1-p_1) \cdot \ln \frac{1-p_1}{1-p_2} + p_1 \cdot \ln \frac{p_1}{p_2} \\ &= \ln \frac{1-p_1}{1-p_2} + p_1 \cdot \ln \frac{p_1}{p_2} - p_1 \cdot \ln \frac{1-p_1}{1-p_2} \\ &= \ln \frac{1-p_1}{1-p_2} + p_1 \cdot \left( \ln \frac{p_1}{p_2} + \ln \frac{1-p_2}{1-p_1} \right) \\ &= \ln \frac{1-p_1}{1-p_2} + p_1 \cdot \ln \frac{p_1 \, (1-p_2)}{p_2 \, (1-p_1)} \end{split}\]∎
Sources: Metadata: ID: P419 | shortcut: bern-kl | author: JoramSoch | date: 2023-10-13, 15:20.