Index: The Book of Statistical ProofsStatistical ModelsUnivariate normal dataAnalysis of variance ▷ F-test for main effect in two-way ANOVA

Theorem: Assume the two-way analysis of variance model

\[\label{eq:anova2} \begin{split} y_{ijk} &= \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk} \\ \varepsilon_{ijk} &\overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2), \; i = 1, \ldots, a, \; j = 1, \ldots, b, \; k = 1, \dots, n_{ij} \; . \end{split}\]

Then, the test statistic

\[\label{eq:anova2-fme-A} F_A = \frac{\frac{1}{a-1} \sum_{i=1}^{a} n_{i \bullet} (\bar{y}_{i \bullet \bullet} - \bar{y}_{\bullet \bullet \bullet})^2}{\frac{1}{n-ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{i j \bullet})^2}\]

follows an F-distribution

\[\label{eq:anova2-fme-h0-A} F_A \sim \mathrm{F}(a-1, n-ab)\]

under the null hypothesis for the main effect of factor A

\[\label{eq:anova2-h0-A} \begin{split} H_0: &\; \alpha_1 = \ldots = \alpha_a = 0 \\ H_1: &\; \alpha_i \neq 0 \quad \text{for at least one} \quad i \in \left\lbrace 1, \ldots, a \right\rbrace \end{split}\]

and the test statistic

\[\label{eq:anova2-fme-B} F_B = \frac{\frac{1}{b-1} \sum_{j=1}^{b} n_{\bullet j} (\bar{y}_{\bullet j \bullet} - \bar{y}_{\bullet \bullet \bullet})^2}{\frac{1}{n-ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{i j \bullet})^2}\]

follows an F-distribution

\[\label{eq:anova2-fme-h0-B} F_B \sim \mathrm{F}(b-1, n-ab)\]

under the null hypothesis for the main effect of factor B

\[\label{eq:anova2-h0-B} \begin{split} H_0: &\; \beta_1 = \ldots = \beta_b = 0 \\ H_1: &\; \beta_j \neq 0 \quad \text{for at least one} \quad j \in \left\lbrace 1, \ldots, b \right\rbrace \; . \end{split}\]

Proof: Applying Cochran’s theorem for two-analysis of variance, we find that the following squared sums

\[\label{eq:anova2-ss-dist} \begin{split} \frac{\mathrm{SS}_A}{\sigma^2} &= \frac{1}{\sigma^2} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} ([\bar{y}_{i \bullet \bullet} - \bar{y}_{\bullet \bullet \bullet}] - \alpha_i)^2 = \frac{1}{\sigma^2} \sum_{i=1}^{a} n_{i \bullet} ([\bar{y}_{i \bullet \bullet} - \bar{y}_{\bullet \bullet \bullet}] - \alpha_i)^2 \\ \frac{\mathrm{SS}_B}{\sigma^2} &= \frac{1}{\sigma^2} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} ([\bar{y}_{\bullet j \bullet} - \bar{y}_{\bullet \bullet \bullet}] - \beta_j)^2 = \frac{1}{\sigma^2} \sum_{j=1}^{b} n_{\bullet j} ([\bar{y}_{\bullet j \bullet} - \bar{y}_{\bullet \bullet \bullet}] - \beta_j)^2 \\ \frac{\mathrm{SS}_\mathrm{res}}{\sigma^2} &= \frac{1}{\sigma^2} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{i j \bullet})^2 = \frac{1}{\sigma^2} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{i j \bullet})^2 \end{split}\]

are independent and chi-squared distributed:

\[\label{eq:anova2-cochran-s1} \begin{split} \frac{\mathrm{SS}_A}{\sigma^2} &\sim \chi^2(a-1) \\ \frac{\mathrm{SS}_B}{\sigma^2} &\sim \chi^2(b-1) \\ \frac{\mathrm{SS}_\mathrm{res}}{\sigma^2} &\sim \chi^2(n-ab) \; . \end{split}\]

1) Thus, the F-statistic from \eqref{eq:anova2-fme-A} is equal to the ratio of two independent chi-squared distributed random variables divided by their degrees of freedom

\[\label{eq:anova2-fme-A-ss} \begin{split} F_A &= \frac{(\mathrm{SS}_A/\sigma^2)/(a-1)}{(\mathrm{SS}_\mathrm{res}/\sigma^2)/(n-ab)} \\ &= \frac{\mathrm{SS}_A/(a-1)}{\mathrm{SS}_\mathrm{res}/(n-ab)} \\ &\overset{\eqref{eq:anova2-ss-dist}}{=} \frac{\frac{1}{a-1} \sum_{i=1}^{a} n_{i \bullet} ([\bar{y}_{i \bullet \bullet} - \bar{y}_{\bullet \bullet \bullet}] - \alpha_i)^2}{\frac{1}{n-ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{i j \bullet})^2} \\ &\overset{\eqref{eq:anova2-h0-A}}{=} \frac{\frac{1}{a-1} \sum_{i=1}^{a} n_{i \bullet} (\bar{y}_{i \bullet \bullet} - \bar{y}_{\bullet \bullet \bullet})^2}{\frac{1}{n-ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{i j \bullet})^2} \end{split}\]

which, by definition of the F-distribution, is distributed as

\[\label{eq:anova2-fme-A-qed} F_A \sim \mathrm{F}(a-1, n-ab)\]

under the null hypothesis for main effect of $A$.

2) Similarly, the F-statistic from \eqref{eq:anova2-fme-B} is equal to the ratio of two independent chi-squared distributed random variables divided by their degrees of freedom

\[\label{eq:anova2-fme-B-ss} \begin{split} F_B &= \frac{(\mathrm{SS}_B/\sigma^2)/(b-1)}{(\mathrm{SS}_\mathrm{res}/\sigma^2)/(n-ab)} \\ &= \frac{\mathrm{SS}_B/(b-1)}{\mathrm{SS}_\mathrm{res}/(n-ab)} \\ &\overset{\eqref{eq:anova2-ss-dist}}{=} \frac{\frac{1}{b-1} \sum_{j=1}^{b} n_{\bullet j} ([\bar{y}_{\bullet j \bullet} - \bar{y}_{\bullet \bullet \bullet}] - \beta_j)^2}{\frac{1}{n-ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{i j \bullet})^2} \\ &\overset{\eqref{eq:anova2-h0-B}}{=} \frac{\frac{1}{b-1} \sum_{j=1}^{b} n_{\bullet j} (\bar{y}_{\bullet j \bullet} - \bar{y}_{\bullet \bullet \bullet})^2}{\frac{1}{n-ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{i j \bullet})^2} \end{split}\]

which, by definition of the F-distribution, is distributed as

\[\label{eq:anova2-fme-B-qed} F_B \sim \mathrm{F}(b-1, n-ab)\]

under the null hypothesis for main effect of $B$.

Sources:

Metadata: ID: P372 | shortcut: anova2-fme | author: JoramSoch | date: 2022-11-10, 21:31.