Index: The Book of Statistical ProofsStatistical Models ▷ Univariate normal data ▷ Analysis of variance ▷ Ordinary least squares for one-way ANOVA

Theorem: Given the one-way analysis of variance assumption

\[\label{eq:anova1} y_{ij} = \mu_i + \varepsilon_{ij}, \; \varepsilon_{ij} \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2), \; i = 1, \ldots, k, \; j = 1, \dots, n_i \; ,\]

the parameters minimizing the residual sum of squares are given by

\[\label{eq:anova1-ols} \hat{\mu}_i = \bar{y}_i\]

where $\bar{y}_i$ is the sample mean of all observations in group $i$:

\[\label{eq:mean-samp} \hat{\mu}_i = \bar{y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij} \; .\]

Proof: The residual sum of squares for this model is

\[\label{eq:rss} \mathrm{RSS}(\mu) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \varepsilon_{ij}^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \mu_i)^2\]

and the derivatives of $\mathrm{RSS}$ with respect to $\mu_i$ are

\[\label{eq:rss-der} \begin{split} \frac{\mathrm{d}\mathrm{RSS}(\mu)}{\mathrm{d}\mu_i} &= \sum_{j=1}^{n_i} \frac{\mathrm{d}}{\mathrm{d}\mu_i} (y_{ij} - \mu_i)^2 \\ &= \sum_{j=1}^{n_i} 2 (y_{ij} - \mu_i) (-1) \\ &= 2 \sum_{j=1}^{n_i} (\mu_i - y_{ij}) \\ &= 2 n_i \mu_i - 2 \sum_{j=1}^{n_i} y_{ij} \quad \text{for} \quad i = 1, \ldots, k \; . \end{split}\]

Setting these derivatives to zero, we obtain the estimates of $\mu_i$:

\[\label{eq:rss-der-zero} \begin{split} 0 &= 2 n_i \hat{\mu}_i - 2 \sum_{j=1}^{n_i} y_{ij} \\ \hat{\mu}_i &= \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij} \quad \text{for} \quad i = 1, \ldots, k \; . \end{split}\]
Sources:

Metadata: ID: P369 | shortcut: anova1-ols | author: JoramSoch | date: 2022-11-06, 11:18.