Proof: Corrected Akaike information criterion converges to uncorrected Akaike information criterion when infinite data are available
Index:
The Book of Statistical Proofs ▷
Model Selection ▷
Classical information criteria ▷
Akaike information criterion ▷
Corrected AIC and uncorrected AIC
Metadata: ID: P316 | shortcut: aicc-aic | author: JoramSoch | date: 2022-03-18, 17:00.
Theorem: In the infinite data limit, the corrected Akaike information criterion converges to the uncorrected Akaike information criterion
\[\label{eq:aicc-aic} \lim_{n \to \infty} \mathrm{AIC}_\mathrm{c}(m) = \mathrm{AIC}(m) \; .\]Proof: The corrected Akaike information criterion is defined as
\[\label{eq:aicc} \mathrm{AIC}_\mathrm{c}(m) = \mathrm{AIC}(m) + \frac{2k^2 + 2k}{n-k-1} \; .\]Note that the number of free model parameters $k$ is finite. Thus, we have:
\[\label{eq:aicc-aic-qed} \begin{split} \lim_{n \to \infty} \mathrm{AIC}_\mathrm{c}(m) &= \lim_{n \to \infty} \left[ \mathrm{AIC}(m) + \frac{2k^2 + 2k}{n-k-1} \right] \\ &= \lim_{n \to \infty} \mathrm{AIC}(m) + \lim_{n \to \infty} \frac{2k^2 + 2k}{n-k-1} \\ &= \mathrm{AIC}(m) + 0 \\ &= \mathrm{AIC}(m) \; . \end{split}\]∎
Sources: - Wikipedia (2022): "Akaike information criterion"; in: Wikipedia, the free encyclopedia, retrieved on 2022-03-18; URL: https://en.wikipedia.org/wiki/Akaike_information_criterion#Modification_for_small_sample_size.
Metadata: ID: P316 | shortcut: aicc-aic | author: JoramSoch | date: 2022-03-18, 17:00.