Definition: Wishart distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Matrix-variate continuous distributions ▷
Wishart distribution ▷
Definition
Sources:
Metadata: ID: D43 | shortcut: wish | author: JoramSoch | date: 2020-03-22, 17:15.
Definition: Let $X$ be an $n \times p$ matrix following a matrix-normal distribution with mean zero, independence across rows and covariance across columns $V$:
\[\label{eq:matn} X \sim \mathcal{MN}(0, I_n, V) \; .\]Define the scatter matrix $S$ as the product of the transpose of $X$ with itself:
\[\label{eq:scat-mat} S = X^T X = \sum_{i=1}^n x_i^\mathrm{T} x_i \; .\]Then, the matrix $S$ is said to follow a Wishart distribution with scale matrix $V$ and degrees of freedom $n$
\[\label{eq:wish} S \sim \mathcal{W}(V, n)\]where $n > p - 1$ and $V$ is a positive definite symmetric covariance matrix.
- Wikipedia (2020): "Wishart distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2020-03-22; URL: https://en.wikipedia.org/wiki/Wishart_distribution#Definition.
Metadata: ID: D43 | shortcut: wish | author: JoramSoch | date: 2020-03-22, 17:15.