Index: The Book of Statistical ProofsStatistical ModelsUnivariate normal dataMultiple linear regression ▷ Total sum of squares

Definition: Let there be a multiple linear regression with independent observations using measured data $y$ and design matrix $X$:

\[\label{eq:mlr} y = X\beta + \varepsilon, \; \varepsilon_i \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2) \; .\]

Then, the total sum of squares (TSS) is defined as the sum of squared deviations of the measured signal from the average signal:

\[\label{eq:tss} \mathrm{TSS} = \sum_{i=1}^n (y_i - \bar{y})^2 \quad \text{where} \quad \bar{y} = \frac{1}{n} \sum_{i=1}^n y_i \; .\]
 
Sources:

Metadata: ID: D37 | shortcut: tss | author: JoramSoch | date: 2020-03-21, 21:44.