Definition: Prior predictive distribution
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Bayesian statistics ▷
Probabilistic modeling ▷
Prior predictive distribution
Sources:
Metadata: ID: D202 | shortcut: prior-pred | author: aloctavodia | date: 2024-08-19, 14:57.
Definition: Consider a full probability model with likelihood function $p(y \vert \theta)$ and prior distribution $p(\theta)$. Then, the marginal distribution of any data point $y_{\mathrm{new}}$, accounting for the prior distribution, is called the prior predictive distribution:
\[\label{eq:prior-pred} p(y_{\mathrm{new}}) = \int p(y_{\mathrm{new}} \vert \theta) \, p(\theta) \, \mathrm{d}\theta \; .\]Metadata: ID: D202 | shortcut: prior-pred | author: aloctavodia | date: 2024-08-19, 14:57.