Definition: Empirical Bayes prior distribution
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Bayesian statistics ▷
Prior distributions ▷
Empirical Bayes priors
Sources:
Metadata: ID: D122 | shortcut: prior-eb | author: JoramSoch | date: 2020-12-02, 18:19.
Definition: Let be a generative model with likelihood function p(y \vert \theta, m) and prior distribution p(\theta \vert \lambda, m) using prior hyperparameters \lambda. Let p(y \vert \lambda, m) be the marginal likelihood when integrating the parameters out of the joint likelihood. Then, the prior distribution is called an “Empirical Bayes prior”, if it maximizes the logarithmized marginal likelihood:
\label{eq:prior-eb} \lambda_{\mathrm{EB}} = \operatorname*{arg\,max}_{\lambda} \log p(y \vert \lambda, m) \; .- Wikipedia (2020): "Empirical Bayes method"; in: Wikipedia, the free encyclopedia, retrieved on 2020-12-02; URL: https://en.wikipedia.org/wiki/Empirical_Bayes_method#Introduction.
Metadata: ID: D122 | shortcut: prior-eb | author: JoramSoch | date: 2020-12-02, 18:19.