Index: The Book of Statistical ProofsGeneral TheoremsBayesian statisticsPrior distributions ▷ Empirical Bayes priors

Definition: Let be a generative model with likelihood function p(y \vert \theta, m) and prior distribution p(\theta \vert \lambda, m) using prior hyperparameters \lambda. Let p(y \vert \lambda, m) be the marginal likelihood when integrating the parameters out of the joint likelihood. Then, the prior distribution is called an “Empirical Bayes prior”, if it maximizes the logarithmized marginal likelihood:

\label{eq:prior-eb} \lambda_{\mathrm{EB}} = \operatorname*{arg\,max}_{\lambda} \log p(y \vert \lambda, m) \; .
 
Sources:

Metadata: ID: D122 | shortcut: prior-eb | author: JoramSoch | date: 2020-12-02, 18:19.