Definition: Probability mass function
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Probability mass function ▷
Definition
Sources:
Metadata: ID: D9 | shortcut: pmf | author: JoramSoch | date: 2020-02-13, 19:09.
Definition: Let $X$ be a discrete random variable with possible outcomes $\mathcal{X}$. Then, $f_X(x): \mathbb{R} \to [0,1]$ is the probability mass function (PMF) of $X$, if
\[\label{eq:pmf-def-s0} f_X(x) = 0\]for all $x \notin \mathcal{X}$,
\[\label{eq:pmf-def-s1} \mathrm{Pr}(X = x) = f_X(x)\]for all $x \in \mathcal{X}$ and
\[\label{eq:pmf-def-s2} \sum_{x \in \mathcal{X}} f_X(x) = 1 \; .\]- Wikipedia (2020): "Probability mass function"; in: Wikipedia, the free encyclopedia, retrieved on 2020-02-13; URL: https://en.wikipedia.org/wiki/Probability_mass_function.
Metadata: ID: D9 | shortcut: pmf | author: JoramSoch | date: 2020-02-13, 19:09.