Definition: Probability density function
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Probability density function ▷
Definition
Sources:
Metadata: ID: D10 | shortcut: pdf | author: JoramSoch | date: 2020-02-13, 19:26.
Definition: Let $X$ be a continuous random variable with possible outcomes $\mathcal{X}$. Then, $f_X(x): \mathbb{R} \to \mathbb{R}$ is the probability density function (PDF) of $X$, if
\[\label{eq:pdf-def-s0} f_X(x) \geq 0\]for all $x \in \mathbb{R}$,
\[\label{eq:pdf-def-s1} \mathrm{Pr}(X \in A) = \int_{A} f_X(x) \, \mathrm{d}x\]for any $A \subset \mathcal{X}$ and
\[\label{eq:pdf-def-s2} \int_{\mathcal{X}} f_X(x) \, \mathrm{d}x = 1 \; .\]- Wikipedia (2020): "Probability density function"; in: Wikipedia, the free encyclopedia, retrieved on 2020-02-13; URL: https://en.wikipedia.org/wiki/Probability_density_function.
Metadata: ID: D10 | shortcut: pdf | author: JoramSoch | date: 2020-02-13, 19:26.