Definition: Joint probability density function
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Probability density function ▷
Joint probability density function
Sources:
Metadata: ID: D216 | shortcut: pdf-joint | author: JoramSoch | date: 2025-02-06, 16:36.
Definition: Let $X \in \mathbb{R}^{n}$ be a continuous random vector. Then, a function $f_X(x): \mathbb{R}^n \to \mathbb{R}$ is the joint probability density function of $X$, if
\[\label{eq:pdf-joint-def-s0} f_X(x) \geq 0\]for all $x \in \mathbb{R}^n$,
\[\label{eq:pdf-joint-def-s1} \mathrm{Pr}(X \in A) = \int_{A} f_X(x) \, \mathrm{d}x\]for any $A \subset \mathbb{R}^n$ and
\[\label{eq:pdf-joint-def-s2} \int_{\mathbb{R}^n} f_X(x) \, \mathrm{d}x = 1 \; .\]- Wikipedia (2025): "Probability density function"; in: Wikipedia, the free encyclopedia, retrieved on 2025-02-06; URL: https://en.wikipedia.org/wiki/Probability_density_function#Densities_associated_with_multiple_variables.
Metadata: ID: D216 | shortcut: pdf-joint | author: JoramSoch | date: 2025-02-06, 16:36.