Index: The Book of Statistical ProofsProbability DistributionsUnivariate continuous distributionsNormal distribution ▷ Definition

Definition: Let be a random variable. Then, X is said to be normally distributed with mean \mu and variance \sigma^2 (or, standard deviation \sigma)

\label{eq:norm} X \sim \mathcal{N}(\mu, \sigma^2) \; ,

if and only if its probability density function is given by

\label{eq:norm-pdf} \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2 \pi} \sigma} \cdot \exp \left[ -\frac{1}{2} \left( \frac{x-\mu}{\sigma} \right)^2 \right]

where \mu \in \mathbb{R} and \sigma^2 > 0.

 
Sources:

Metadata: ID: D4 | shortcut: norm | author: JoramSoch | date: 2020-01-27, 14:15.