Definition: Normal distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Normal distribution ▷
Definition
Sources:
Metadata: ID: D4 | shortcut: norm | author: JoramSoch | date: 2020-01-27, 14:15.
Definition: Let $X$ be a random variable. Then, $X$ is said to be normally distributed with mean $\mu$ and variance $\sigma^2$ (or, standard deviation $\sigma$)
\[\label{eq:norm} X \sim \mathcal{N}(\mu, \sigma^2) \; ,\]if and only if its probability density function is given by
\[\label{eq:norm-pdf} \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2 \pi} \sigma} \cdot \exp \left[ -\frac{1}{2} \left( \frac{x-\mu}{\sigma} \right)^2 \right]\]where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$.
- Wikipedia (2020): "Normal distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2020-01-27; URL: https://en.wikipedia.org/wiki/Normal_distribution.
Metadata: ID: D4 | shortcut: norm | author: JoramSoch | date: 2020-01-27, 14:15.