Index: The Book of Statistical ProofsGeneral TheoremsFrequentist statisticsStatistical hypotheses ▷ Point/exact vs. set/inexact

Definition: Let $H$ be a statistical hypothesis. Then,

  • $H$ is called a point hypothesis or exact hypothesis, if it specifies an exact parameter value:
\[\label{eq:hyp-point} H: \; \theta = \theta^{*} \; ;\]
  • $H$ is called a set hypothesis or inexact hypothesis, if it specifies a set of possible values with more than one element for the parameter value (e.g. a range or an interval):
\[\label{eq:hyp-non-point} H: \; \theta \in \Theta^{*} \; .\]
 
Sources:

Metadata: ID: D129 | shortcut: hyp-point | author: JoramSoch | date: 2021-03-19, 14:28.