Definition: Conditional differential entropy
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Information theory ▷
Differential entropy ▷
Conditional differential entropy
Sources:
Metadata: ID: D34 | shortcut: dent-cond | author: JoramSoch | date: 2020-03-21, 12:27.
Definition: Let $X$ and $Y$ be continuous random variables with possible outcomes $\mathcal{X}$ and $\mathcal{Y}$ and probability density functions $p(x)$ and $p(y)$. Then, the conditional differential entropy of $Y$ given $X$ or, differential entropy of $Y$ conditioned on $X$, is defined as
\[\label{eq:dent-cond} \mathrm{h}(Y|X) = \int_{x \in \mathcal{X}} p(x) \cdot \mathrm{h}(Y|X=x) \, \mathrm{d}x\]where $\mathrm{h}(Y \vert X=x)$ is the (marginal) differential entropy of $Y$, evaluated at $x$.
Metadata: ID: D34 | shortcut: dent-cond | author: JoramSoch | date: 2020-03-21, 12:27.