Definition: Cross-validated log model evidence
Definition: Let there be a data set $y$ with mutually exclusive and collectively exhaustive subsets $y_1, \ldots, y_S$. Assume a generative model $m$ with model parameters $\theta$ implying a likelihood function $p(y \vert \theta, m)$ and a non-informative prior density $p_{\mathrm{ni}}(\theta \vert m)$.
Then, the cross-validated log model evidence (cvLME) of $m$ is given by
\[\label{eq:cvLME} \mathrm{cvLME}(m) = \sum_{i=1}^{S} \log \int p( y_i \vert \theta, m ) \, p( \theta \vert y_{\neg i}, m ) \, \mathrm{d}\theta\]where $y_{\neg i} = \bigcup_{j \neq i} y_j$ is the union of all data subsets except $y_i$ and $p( \theta \vert y_{\neg i}, m )$ is the posterior distribution obtained from $y_{\neg i}$ when using the prior distribution $p_{\mathrm{ni}}(\theta \vert m)$:
\[\label{eq:post} p( \theta \vert y_{\neg i}, m ) = \frac{p( y_{\neg i} \vert \theta, m ) \, p_{\mathrm{ni}}(\theta \vert m)}{p( y_{\neg i} \vert m )} \; .\]One addend of the cvLME is referred to as the out-of-sample log model evidence (oosLME) of $m$ for the $i$-th data subset:
\[\label{eq:oosLME} \mathrm{oosLME}_i(m) = \log \int p( y_i \vert \theta, m ) \, p( \theta \vert y_{\neg i}, m ) \, \mathrm{d}\theta \; .\]- Soch J, Allefeld C, Haynes JD (2016): "How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection"; in: NeuroImage, vol. 141, pp. 469-489, eqs. 13-15; URL: https://www.sciencedirect.com/science/article/pii/S1053811916303615; DOI: 10.1016/j.neuroimage.2016.07.047.
- Soch J, Meyer AP, Allefeld C, Haynes JD (2017): "How to improve parameter estimates in GLM-based fMRI data analysis: cross-validated Bayesian model averaging"; in: NeuroImage, vol. 158, pp. 186-195, eq. 6; URL: https://www.sciencedirect.com/science/article/pii/S105381191730527X; DOI: 10.1016/j.neuroimage.2017.06.056.
- Soch J, Allefeld C (2018): "MACS – a new SPM toolbox for model assessment, comparison and selection"; in: Journal of Neuroscience Methods, vol. 306, pp. 19-31, eqs. 14-15; URL: https://www.sciencedirect.com/science/article/pii/S0165027018301468; DOI: 10.1016/j.jneumeth.2018.05.017.
- Soch J (2018): "cvBMS and cvBMA: filling in the gaps"; in: arXiv stat.ME, 1807.01585, eq. 1; URL: https://arxiv.org/abs/1807.01585.
Metadata: ID: D111 | shortcut: cvlme | author: JoramSoch | date: 2020-11-19, 04:55.