Definition: Sample covariance
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Covariance ▷
Sample covariance
Sources:
Metadata: ID: D144 | shortcut: cov-samp | author: ciaranmci | date: 2021-04-21, 06:53.
Definition: Let $x = \left\lbrace x_1, \ldots, x_n \right\rbrace$ and $y = \left\lbrace y_1, \ldots, y_n \right\rbrace$ be samples from random variables $X$ and $Y$. Then, the sample covariance of $x$ and $y$ is given by
\[\label{eq:cov-samp} \hat{\sigma}_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})\]and the unbiased sample covariance of $x$ and $y$ is given by
\[\label{eq:cov-samp-unb} s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})\]where $\bar{x}$ and $\bar{y}$ are the sample means.
- Wikipedia (2021): "Covariance"; in: Wikipedia, the free encyclopedia, retrieved on 2020-05-20; URL: https://en.wikipedia.org/wiki/Covariance#Calculating_the_sample_covariance.
Metadata: ID: D144 | shortcut: cov-samp | author: ciaranmci | date: 2021-04-21, 06:53.