Definition: Sample correlation coefficient
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Correlation ▷
Sample correlation coefficient
Sources:
Metadata: ID: D168 | shortcut: corr-samp | author: JoramSoch | date: 2021-12-14, 07:23.
Definition: Let $x = \left\lbrace x_1, \ldots, x_n \right\rbrace$ and $y = \left\lbrace y_1, \ldots, y_n \right\rbrace$ be samples from random variables $X$ and $Y$. Then, the sample correlation coefficient of $x$ and $y$ is given by
\[\label{eq:corr-samp} r_{xy} = \frac{\sum_{i=1}^n (x_i-\bar{x}) (y_i-\bar{y})}{\sqrt{\sum_{i=1}^n (x_i-\bar{x})^2} \sqrt{\sum_{i=1}^n (y_i-\bar{y})^2}}\]where $\bar{x}$ and $\bar{y}$ are the sample means.
- Wikipedia (2021): "Pearson correlation coefficient"; in: Wikipedia, the free encyclopedia, retrieved on 2021-12-14; URL: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#For_a_sample.
Metadata: ID: D168 | shortcut: corr-samp | author: JoramSoch | date: 2021-12-14, 07:23.